Recursively enumerable Boolean algebras

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Recursively Enumerable Degrees

Decision problems were the motivating force in the search for a formal definition of algorithm that constituted the beginnings of recursion (computability) theory. In the abstract, given a set A the decision problem for A consist of finding an algorithm which, given input n, decides whether or not n is in A. The classic decision problem for logic is whether a particular sentence is a theorem of...

متن کامل

Recursive and Recursively Enumerable

I. Basic concepts 1. Recursive enumerability and recursiveness. We consider infinite sequences of non-negative integers, free from repetitions. A familiar equivalence relation between such sequences is that based on sets: two sequences are equivalent when they enumerate the same set. The equivalence classes under this relation, with the necessary operations introduced, form a system isomorphic ...

متن کامل

On Recursively Enumerable Structures

We state some general facts on r.e. structures, e.g. we show that the free countable structures in quasivarieties are r.e. and construct acceptable numerations and universal r.e. structures in quasivarieties. The last facts are similar to the existence of acceptable numerations of r.e. sets and creative sets. We state a universality property of the acceptable numerations, classify some index se...

متن کامل

Relatively recursively enumerable reals

We say that a real X is relatively r.e. if there exists a real Y such that X is r.e. (Y ) and X 6≤T Y . We say X is relatively REA if there exists such a Y ≤T X. We define A ≤e1 B if there exists a Σ1 set C such that n ∈ A if and only if there is a finite E ⊆ B with (n, E) ∈ C. In this paper we show that a real X is relatively r.e. if and only if X 6≤e1 X. We prove that every nonempty Π01 class...

متن کامل

Selection by Recursively Enumerable Sets

For given sets A, B, and Z of natural numbers where the members of Z are z0, z1, . . . in ascending order, one says that A is selected from B by Z if A(i) = B(zi) for all i. Furthermore, say that A is selected from B if A is selected from B by some recursively enumerable set, and that A is selected from B in n steps iff there are sets E0, E1, . . . , En such that E0 = A, En = B, and Ei is selec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Mathematical Logic

سال: 1978

ISSN: 0003-4843

DOI: 10.1016/0003-4843(78)90027-x